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1. Getting solutions in the hodograph plane. I’he flow func- 
tion +-of a plane steady-state vortex free motion of a nonviscous gas 
subject to the adiabatic law satisfies the equation of Chaplygin 

ss+K$$& ( K = 1 - (28 +w 
(l-s)@+1 

(i.1) 

Here 
T 
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K is the adiabatic exponent, u is the velocity, u. is the limiting velo- 
city in the gas, r is the value of corresponding to the speed of sound, 
6 is the angle bet&n the velocity and the x-axis, and K is the 
Chaplygin function, We shall seek a solution of Equation (1.1) in the 
form 

~=Po(a)$-OP1(a)l...fB”Pv(a)+.. . +PflF~~+~ (a) (i-3) 

where the Py(S) are functions of (I only and n is an arbitrary non- 
negative integer. 

For Equation (1.11 to hold the function P,, must satisfy the following 
system of equations 

I’,” + (v + 2) (v 4 I) KP,+, = 0 (v = o, le... ,27x- l), Pin=O, Pi”+,= 0 (1.4) 

The equations of this system yield two independent systems of equa- 
tions for P,, with even and odd indices. Integrating these equations we 
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(1.5) P (- Ilk a*---2k = (2n -2/c)! i: (a2mflG2k-2m + b2m+,F2k-2,) 
m==o 

P 2*---2k+l= 
(-Ilk 

(2n -_2k*+ 1) ! i (namG2k-2rn + b2mFak--2m) (k = o,l,...,n) (1.6) 
m=o 

where the functions F2 i and G, i and the functions F, i_ 1 and C, i_ 1 (i = 

1, 2, **., n) which are indispensable in the sequel are given by the 

fonnul as a s 9 
F 2&-l== 

I 
* KF2t_2 da, Fzi = 

s 
Fzi_lda = 
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(0 -s) R (s) Fsi_, (s) ds 0.7) 

00 00 % 
0 0 0 

G 2i-1 E 
s 
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*0 00 00 

F,= 1, G, = a - clg W) 

6. and bi are constants of integration. a0 is the value of Q correspond- 

&g to an arbitrary value of T = r O in ( 1.1). From Chaplygin’s equations 

(1.10) 

we find an expression for the velocity potential 4 in the form 

with 

2n+2 

T= 2 VQv(u) (1.11) 
v=o 

Qr+--2k = (zn - 2k)! 
(- 1)k n;l: ( 

a2mG2k-2m+, + b2m F2k-2m+~j ) (k=--,O,f,..., n) (1.12) 
m==o 

Qzn--zK+r = ‘- ‘)*+l i; tarm +I-~+..~~+~ + b,m_tl F2k--2m +1) 
(1.13) 

(2% - 2k+l)! (k = 0, 1, 2,...,n) 
m=* 

Here 

It might seem that this solution is not new and that it could be ob- 

tained by the well-known method of Bergman when one takes as the 

“generating” harmonic function a sum of homogeneous harmonic polynomials. 

However, this is not so for the Bergman method would yield an infinite 

rather than a finite series in 8 as the exact solution. 

2. Some properties of the flows corresponding to the ob- 
tained solutions. By assigning different values to n and to the inte- 

gration constants we obtain arbitrarily many different solutions. Since 



the 

may 
the 

Solutions of a plane, vortex free gas flOv ‘785 

System (1.4) splits into t\No independent systems, the Solution (1.3) 
be regarded as the sum of two solutions, one with even indices and 
other with odd indices: 

+ = i P Pzr (a), + = i 02r+1 P2r+,(a) (2.1) 
r=0 r=o 

If azn+ 1 is the only non zero constant in (1.5) and (1.13)) then 
there remain only the functions P, = (-l)“aZn + 1, G, = aG,, Q1 = 
(-l)“+ l a. In this case the first solution in (2.1) and 
Equation y?il’, iiild $ = aG,, 4 = - a0, i.e. the gas flow is of the 
vortex point type. 

In the sequel we assune everywhere o,, = 0, the value corresponding to 
critical velocity. It is clear that this assumption is no restriction of 
generality and is convenient for the study of sonic motions since in the 
case of a sonic flow the functions F and G with different indices other 
than F, = G_, = 1 vanish. 

If we then put all the bi in (1.5) and (1.6) with the possible excep- 
tion of b2,,+ 1 
(-l>nb,n+ 1 

equal to zero then all the functions P, other than P, = 
vanish on the Mach line. Hence + = const on the Mach line 

separating the subsonic and supersonic flows and this line is a flow 

line. Thus in this particular case the flow has the same property as a 

flow due to an isolated vortex. 

Similarly, if in (1.6) and (1.12) we put all the coefficients other 

than b,,, equal to zero, then the only non zero functions are P, = 
(--l>“b, = b, QO = C-l)“b,, F, = bF,. In this case the second solution 
in (2.lY and Equation (1.11) give I,!J = be, C$ = bF,, i.e. a solution for a 
source in the gas, 

It is well known that in case of a shock free transition through the 

Mach line it i’s necessary that ~?$/a19 = 0 on that line. (1.31, (1.5) and 
(1.6) imply that on the Mach line 

2 = i (- I)” { (2n ~~k+l)! (j’---2k+1 + (a, 02”-2k] 
k=O 

(2.2) 

It follows that the transition of the gas through the Mach line is 

possible only for those sections for which not all of the coefficients 
vanish simultaneously. In the opposite case continuation of a vortex free 
flow beyond the Mach line is impossible. This agrees with the well-known 
property of a gas flow of the source type. 

3. Computations. lhe functions F and G are not subject to any 
specific conditions and can be computed in advance for all problems. 

In the sequel we put K = 1.4 so that /3 = 2.5. Then by (1.1) 
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The substitution 
the integrable form 

L . 

I 

z6 dz 
OZZ __ 

1 -zz 
** 

Hence 

7=1--z2 reduces the expression for u in (1.1) to 

(z* = 1/l -T* = _I_ 1/z=l/,_ -a - 0.9128iO92917) 

(A = 0.2512511362) 

where A is the value of the variable terms for z = z*. 

The functions F, and F2 can be obtained by direct computation 
grals. On the basis of (3.1) and (3.2) we get 

(B = 1.5883027569) 

(3.2) 

(3.3) 

of inte- 

+B(z+;+; -C 
> 

(C = 0.3435517463) (3.5) 

Integration by parts enables us to express all the functions G2i_ 1 
in terms of the other functions, namely, 

Gzi_r = i (- l)k-’ FkC2i_-l_-k (i=l,...,n+l) (3.6) 
k-1 

Thus we need only determine all the other functions F and the func- 
tions G with even indices, To tabulate the values of these functions one 

can use formulas for approximate evaluation of integrals or other methods 
(e.g. the Taylor expansion about o = 01. 

4. Transition to hodogr aph plane. Substitution of (1.3) and 
(1.11) in the Chaplygin formulas 

dx =L 
&l/l 

cos Q dp- c_ 
sin0 dlry , 

(I-+ 3 
dy= -t- 

%I+G 
sin Q drq+- - c’s’ d+ 

(I-+ 1 (4.1) 

and integration yeild the following expressions for the coordinates of 
the hodograph plane 

z=- Us7 (R sin 8 + S ~0s 0) +-Cl, ?/z-p 
171 

om>T (S sin Q-B cm Q)-I-c, (4.2) 

Here C, and C, are integration constants and R and S are functions of 
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a and 6 defined by the fomulas 
2n+1 2n-k1 

R= 2: (a&+ b*ffJ, s= 2 (akgk+$$J (4.3) 
kzo k=O 

where ak and b, are the same arbitrary constants as before and the func- 
tions ek and gk have the form (4.44) and (4.5) below (depending on whether 
k = 2ni or K = 2m + 1) 

n---m 

e2m 
(- I),-+ 

= z. (2r + I)! P2r+11Gz(n-m--r)-_l - qG2(TI-Trt-r-l)1 

n-m 

%m+1= Ix, ',$y f72, G,~n-m_r)-l --Q~2(m-rn-r-1)~ 

(4.4) 

n-m 

g 2m = z. -q$$=. P2r v$‘(,-m-,)-I-- dG(n-m-r) 1 

n-m 
(4.5) 

g 2m+1= z 
-j (_ qn--r--l 

r=O (27 + $I! 
Psrl_I {Gz(n-*-r)--3 -_ QG2(7a-m-+-11) 

ne functions fk are obtained from the expression for the ck by re- 

placing in the latter the functions G by the functions F with the same 
index. In the same way one gets the functions h, from the expressions for 

the gk. AlsO 

q = (1 I._ +/e (4.5) 

pzr = tIzr - 2r (Zr- 1) 02r-2 +. . _ .+ (- l)r-i 2r (2r - 1). . .4.3.C12+ (- 1)’ (2r)! 

P2r__t1= Ozr+’ -(2r -i_. 1) 2r02,‘-’ f. n s + ( - 1)’ (2r + I)! B (r=O,l,L) 
(4 .‘I 

Finally, in (4.4) and (4.5) it is necessary to put F_1 = F_2 = F_3 = 

G_, = G+ = 0. 

5. hamples. We consider gas flows corresponding to solutions of 
the first type (2.1) for I? = 1 and cb = 0 and of the second type (2.1) 

for n = 0 and b, 
$’ takes the foxm 

= 0. In the first case the dimensionless flow function 

and in the second case the form 

(5.1) 

To utilize (3,3), (3.4) and (3.5) f or computations we tabulated the 
functions a, F, and F, as functions of T at intervals hr = 0.005 for 
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0 < r < 0.4 and AT = 0.05 far r > 0.4. 

Fig. 1. 

V. I. Mikuta and L.G Ibnskaia participated in the computations and 
the determination of the form of the flows. 

To obtain dimensionless coordinates we divided in the first case by 

Wni and in the second case by -so/v,. It then turned out that the Mach 
line coincident with the limiting line had the form of an evolute of a 
circle of radius q,/dr * starting at the point x0 = 0, y” = q,/dr * 

where q, and T * correspond to the critical velocity. The lines of flow 
issue from the points of the limiting line in a direction orthogonal to 
that line on its convex side and bend in the same direction as that line 

for subsonic velocities and, weakly, in the opposite direction for super- 

sonic velocities. To the values 8 > 0 and 8 < 0 there correspond two 

limiting lines symmetric with respect to the y-axis. Only a flow associ- 

ated with one of these limiting lines is possible since the lines of flow 
corresponding to two different evolutes intersect each other. 

Fig. 2, 

‘Ihe flow corresponding to (5.2) turned out to be more interesting. 

Here one obtains a flow symmetric with respect to the x-axis whose 
qualitative features are represented in Fig. 1. At infinity to the left 
the velocities are zero. Then the flow gradually picks up speed and the 

flow lines converge very slowly and end on the segment BC of the x-axis. 
At B the velocity is equal to the velocity of sound and it decreases as 
wego fromBtoC.On AB 1/1”=0. 

In this case the Mach line consists of two evolutes of a circle of 
radius I/\/T which originate at x0 = l/\/r *, y” = 0 (the point B in 
Fig. 1) and *,re branches of the line of flow $’ = 0. The limiting line 
also issues from B in a direction perpendicular to the x-axis. In this 
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Fig. 3. 

case an unsymmetric, mixed gas flow depicted in Fig. 2 is possible. Here 
ABE is a line of the flow $’ = 0 which appears on the segment BE of the 
Mach line and BD is the limiting line. Below and to the right of ABE 
is the flow with subsonic velocity and the lines of flow gradually con- 
verge as a result of increased velocity along these lines. In the region 
DBE the flow has supersonic velocity. Reflection in the x-axis yields 
another such flow corresponding to negative values of 8. 

Finally when we pass to the next sheet of the Riemann surface we ob- 
tain a pure supersonic flow whose qualitative features are represented 
in Fig. 3. Here the flow can be assumed to be synnnetric. The part of the 
x-axis to the right of B is a line of the flow $ = 0. 
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